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J. Phys. A: Math. Gen. 15 (1982) 3405-3410. Printed in Great Britain 

Local conservation laws for the two-dimensional periodic 
SU(n +1) Toda lattices 

R S Farwellt and M MinamiS 
t Blackett Laboratory, Imperial College, London SW7 2BZ, England 
$. Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan 

Received 21 April 1982 

Abstract. An infinite numnber of local conservation laws are derived for the two- 
dimensional periodic SU(n + 1) Toda lattice equations following the well known method 
for the sine-Gordon equation. 

This is a short communication, which is a sequel to our previous paper (Farwell and 
Minami 1982b, to be referred to as 11), where we demonstrated that the two- 
dimensional equations for the periodic SU(n + 1) Toda lattices are equivalent to two 
first-order differential equations, called the Kac-van Moerbeke (KVM) equations. 
Paper I1 naturally arose as a consequence of our earlier work on the two-dimensional 
Toda lattices governed by classical simple groups (Farwell and Minami 1982a to be 
referred to as I). 

The existence of the KVM equations produces, in addition to the Backlund transfor- 
mations discussed in 11, a formal way of deriving an infinite series of local conservation 
laws. It is the method of deriving the conservation laws which we consider here. It 
is orthodox in the sense that it follows the well known method for the sine-Gordon 
equation. We can apply this approach, since, as was explained in 11, the two- 
dimensional periodic SU(n + 1) Toda lattice equations are generalisations of the 
hyperbolic sine-Gordon equation. For a review on conservation laws, in particular 
for the sine-Gordon equation, we refer the reader to Chau's paper (Chau Wang 1980), 
which contains further useful references. 

Firstly, we shall provide a resumC of the mathematical techniques and results 
developed in I1 and which we shall require here. 

We define T +  = (a1, aZ,,  . . , a,) and p 3 -a,+1 to be the set of positive simple 
roots and the maximal root of the classical Lie algebra, a,, respectively. Then the 
(n + 1) x (n + 1) matrix K with entries 

2 Kij = 2 ( ~ i c y j / ( ( ~ j )  i, j = 1,2,  . . , n + 1 

is the extended Cartan matrix defined by (2.2) in 11. K determines the Euclidean Lie 
algebra ai1) (Helgason 1978), which is associated with periodic SU(n + 1) Toda lattices. 
Its 3(n + 1) canonical generators, E+,, E-,  and Ha, satisfy for a, /3 E 5 = T + W  ( -p) ,  

[Ha,HBl=O, [Ha, Ea01 = * K o ~ E * ~ ,  [E,, E-0 1 = &pH, 
(1) 

( U ~ E , , ) ' - ~ ~ ~ ( E ~ B )  = 0 f f  + o  
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(Serre 1966). If we use the representations for E,,, H,, a E rr+ and the ordering of 
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the positive simple roots given in I, then 

Ha,+, =en+in+1-e11 = -en+i i ,  = -e in+i .  

In terms of these generators, we can define gauge potentials, B,  and B,, as 

B , = B ; + B ~ ,  B,  = B ;  + B $  

where 

BZ= e'-E-, BE = - e'=E+, 

BE = (&$,)Ha 

a a n  ff€ii 

~ h ,  = - (aEGff)H,. 
a a i i  a € +  

Here we have used 

a, = - C KapGp sa = - K a p S t p  
P E +  p c n  

which automatically satisfy 

c a, =o ,  c s,=o. 
a c n  a a i i  

From the zero field-strength condition it may be inferred that BZ, Bh,, BZ and B $  
satisfy the relations 

8 8 :  -a,B$-[B;, B',]=O. (9) 
The equations (8) and (9) are just the subsidiary and main equations of I and hence 
the latter gives the periodic SU(n + 1)  Toda lattice equations, namely 

a,a,(a, +6,)= - K , ~  exp(ap +ep). 
p a i r  

We now introduce a cyclic permutation matrix E defined by 

E = 1 E+a. 
a a i i  

This matrix has a similar effect to the one introduced in §5 of I1 except that now 
E''+' = -I. The introduction of E enables us to rewrite the KVM equations in the form 

[B:, E- ' ]= y- l (~ : -~- l~z)  ( I l a )  

[B;, E ] = y ( B ;  -EBe3- ' )  ( I l b )  
where y is the parameter of the Lie transformation (Goursat 1925). It is straightfor- 
ward to show that the KVM equations (1 1)  are equivalent to the Toda lattice equations 
(9). 

The first stage in the derivation of the local conservation laws involves the definition 
of two currents satisfying a continuity-type equation. We propose to use the currents 
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defined by 

j u  = Tr(EB",), ji = -Tr(E-'B;). 

Since, by using equations (8) and (ll), 

y-lEaiB', = y-'[EB',, Bk]+(BEB', -EBEE-'BZ) 

and 

yE-'a,,B', = y[E-'BZ, Bh,]+ ( B D :  - E - ' B z B Z )  

their difference satisfies 

3407 

(12) 

y-lEapB; -yE-'a,,B: = y-l[EBE, Bk]-y[E- 'B; ,  Bh,]+[B;, BE]+[E-'BE, EB;] .  
^ I  (13) 

By taking the trace of both sides of equation (13) and introducing j u  and ill from (12)' 
we see that the currents satisfy the continuity equation 

y-la,j,, + r a j ,  = 0. (14) 

Substituting for BE, BE and E from (4) and (10) respectively, we find that j u  and j ;  
are explicitly given by 

n t l  n + l  

j,, = 1 exp Gi j a  = expui 
i = l  i = l  

where here and in the following we abbreviate U, with (Y = ai by vi and let the index 
i run modulo (n  + 1). 

Now, an infinite set of conservation laws is derivable from (14). Firstly, we note 
from (116) that at y = 0, [Bk, E ]  vanishes and hence Gi = 0, i = 1, 2 ,  . . . , n + 1. So 
near y = 0, we expand & in powers of y as follows 

In terms of Toda's displacement variables introduced in (4.7) of I1 

B 6. = q. -q? (Ti =qi-1 -4i' 1 1 1  

and hence using the expansion (16) we may write 
m 

which itself implies 

By substituting (16) and (18) in ( l l a )  and equating coefficients of powers of y,  we 
obtain equations relating c ! ~ '  for different values of k, for example 

a u ( q i - l - q i ) = c j l )  -c!l) 1 - 1  (19a) 

a,cj" = c y  -c;y1 + $ [ ( C I 1 ) ) Z - ( C i + l )  (1) 2 ] 
a ( 2 )  =~1~)-c13,)1 + ( C i  (2) c i  (1) -Cie1Cit1)+i[(Ci (2) (1) (1) ) 3 - ( C i + 1 )  (1) 3 ] 

(196) 

(19c) uc 1 
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and so on. Moreover from (7) and (16), we note that 
n t l  

c jk )  = o  
I = 1  

for all values of k .  
On the other hand, if we substitute (16) and (18) into the continuity equation (14), 

then, again by equating coefficients of powers of y, we obtain an infinite series of 
continuity equations. The first few examples are 

n + l  n i l  

a, 1 exp(q,-~-q,)[c!~’1-t(c!’’)21-~ri  1 [ t ( ~ j ~ ’ ) ~ + c ,  ( 3 )  c ,  (1) + i ( c ,  (1) ) 2 c ,  ( 2 )  ] = o ,  ( 2 1 ~ )  
, = 1  i = 1  

where we have used the conditions (20). 

using the constraint equations (19). In particular, if we choose 
Obviously we may write the continuity equations (21) in terms of the q, only by 

c ; l )  = - a u q ,  (22a 1 

as a solution of (19a), then the c : ~ ) ,  k 2 2 ,  are related to q, by higher and higher 
orders of differentiation. For instance, from (196) 

where, from (20) 

Consequently (21a)  may easily be rewritten as 

(2 16) becomes 

a, , = I  2 [ (aUq~~l )exp(q~- l -4 , ) l+a , [  , = I  f (duqI)~ t (Tl  4,) +: 1 = 1  (duql)3] = O  

and so on. 

n + l  n t l  

(236) 

By using the difference displacement variable 

PI = 41-1 -41 

we may re-express (21a) without using the particular solution (22a).  From (19a), 
we find that 
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and, hence by summing (24) from i = 1 to n + 1 and substituting in (21a), we obtain 

We shall consider this last equation explicitly for the algebra a:", which is associated 
with the periodic SU(2) Toda lattice. Since in this case p1 = -p2, (25) becomes simply 

(26) 2a, cosh p1 +aa,,(aupl)' = 0. 

This is a well known continuity equation, since it is readily derivable from the 
sinh-Gordon equation by multiplying by aup. 

We showed in I1 that it is possible to obtain from the KVM equation two combina- 
tions of variables , pi and p:, both of which staisfy the periodic SU(n + 1) Toda lattice 
equation. Hence we could use 

as an alternative to (18). In the resultant working, q: and q:-~ replace qi and qi-l 
respectively in (19a) and the left-hand sides of (196) and (19c) are replaced by a,~!:'~ 
and duc:?l respectively. Obviously then pi in (25), for example, is replaced by p?. 

It is apparent that we could also carry out the derivation of the conservation laws 
by expanding ai, i = 1,2 ,  . . . , n + 1 near infinity in inverse powers of y. However, the 
subsequent infinite series of conservation laws can be obtained simply by interchanging 
U and 6 in (23), because the system is 'dual' symmetric under the exchange 

(Y, 4 6 ) + W 1 ,  6, U). 

Furthermore, we can suggest another formal way of obtaining a set of conserved 
currents, by recalling that the Zakharov-Shabat equation 

a& -a,& - [B,, B,,] = 0, (27) 

a,M = [M, BA a N  = [M, B J .  (28) 

a,(Be~")+a,(BeN") = [B:M", B,]+[Be,M", B,,] 

Tr[a,(B:M")+a,(B~M")]= 0. (29) 

i:' = Tr(BeN"),  ,it) = Tr(B",") n = 1 , 2 , 3 , ,  , . (30) 

i.e. equations (8) and (9)' are just the compatibility condition of the two equations 

Then, by using (8) and (28), we can show that for n being a positive integer 

and hence it is obvious that 

Consequently, we may define a set of currents 

which, by virtue of (29), satisfies the continuity equation 
ai; '  + auT',' = 0. 

The conservation laws (23) may be reduced to one dimension by making the 
identification U = E = t. As in 0 4 of I f ,  if we reduce B, and BE given by (3) to A 

+ W e  should like to point out here that L(0)  in (4.7)-(4.11) of I should be read as L,o~ ,  because L( t )  does 
not necessarily reduce to RL(f)R-'  as t + O .  Llo, is to be defined by L,o,=R-'L(t)R- . 
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and B respectively, then (27) becomes the Lax pair equation 

a& = [L, A ]  

where L = B - A  and so is explicitly given by 

L = -  1 ( e"-E, +e"-E-,)- 1 &(&+&))Ha. 
a€* U € *  

As is well known, the conservation laws in the one-dimensional case are produced from 

a, Tr L p  = 0 p = l , 2 , 3  ) . . . .  
The first non-trivial conserved current occurs for p = 2, when, from (31), 

is a constant. By differentiating (32) with respect to t ,  we produce the same form of 
equation as from the reduction of (23a) (or equivalently (25)), since 

and 
B B B  

U, +GI =q , -1  - q ,  = p  

a,($l +& -rL,-l-$,-l)=-a&l B = c ' * )  
1 - 1 .  

However, it is not clear to us at present what are the roles of the parameter y of the 
Lie transformation and of the 'dual symmetry' (or relativistic invariance) when the 
reduction to one dimension takes place. 

The one-dimensional reduction presented in § 4 of I has recently beeen discussed 
by Aomoto in a different mathematical context (Aomoto 1982). His work may be 
relevant to ours since he considers a periodic system equivalent to the periodic Toda 
lattice in terms of an 'infinite-dimensional analogue' of the Iwasawa decomposition. 

Finally, we should like to remark that there seem to be several different methods 
of obtaining infinite series of conservation laws; for example, that of Takhadzhyan 
(1974), used in the specific case of the sine-Gordon equation and of Mikhailov er a1 
(1981) for two-dimensional Toda lattices. These different methods may combine to 
give insight into the general problem of conservation laws. 
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